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Introduction 

Machine learning (ML) and artificial intelligence (AI) have been one of the influential technologies that 

modernize the society and produce far reaching implications in the industries, including not only such 

fields of knowledge as healthcare and finance, manufacturing and autonomous systems but also others 

(Jordan & Mitchell, 2015). The data creation and growth of AI models to the phenomenal level has also 

been the moving force behind excellent achievements in pattern recognition, natural language 

processing, and decision systems (LeCun, Bengio, & Hinton, 2015). However, the use of cutting-edge AI 

systems also has the main challenges that relate to energy consumption, and computational scalability 

and the capabilities to operate data spaces of high dimensions (Arute et al., 2019). An extension of the 

current silicon-based designs, as foretold by Moore will imminently impose a physical and 

thermodynamic limit on its future by which scientists have been driven towards alternative paradigms of 

computing which has the potential to breach these limits (Waldrop, 2016). 

The most promising horizon of this quest of the revolutionary power of computation is quantum 

computing. Unlike the classical computers where a unit of information is a bit, quantum computers 

 

 

Faced with exponentially growing complexities and data demands necessary to train the artificial 

intelligence (AI) and machine-learning (ML) models, the classical paradigms of computing are 

successfully being restricted by computational hardness and scale limit capacities (Biamonte et al., 

2017). The fact that quantum computing was developed over the past decades means that 

quantum-provisioned algorithms have the potential of exponential speeds improvement on some of 

the ML applications such as the ones involving optimization and sampling (Harrow et al., 2009). 

The paper looks into the possibility of quantum computing in AI and ML and discovering how 

quantum algorithms (Quantum Support Vector Machines (QSVM) and Variational Quantum 

Circuits) enhance the available ones (Schuld & Petruccione, 2018). Important hybrid quantum-

classical frameworks are revisited and reproduced with published, open databases of 

benchmarked metrics, such as accuracy and convergence rates (Otterbach et al., 2017). We can 

determine in our findings that quantum algorithms are theoretically and practically more 

resource-efficient and faster even though they are still very problematic to come up with some 

solutions in error correction, coherence, and use of qubits (Preskill, 2018). The study contributes 

to the already ongoing discourse concerning the application of quantum computational capabilities 

towards ameliorating the shortcomings of the current AI and identifies the directions in the scope 

of future investigations of hybrid and fully quantum machine learning systems (Cerezo et al., 

2021). 
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complexity, hybrid models, scalability 
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utilize so-called qubit or the quantum bit and which may be in a superposition and can become 

entangled with one another. This enables quantum computers to calculate parallelly along a large 

number of potential courses of calculations to provide the prospect of exponentially faster solving some 

problem impossible to solve with conventional computers (Harrow, Hassidim, & Lloyd, 2009). In this 

respect, as an illustration, quantum computing algorithms, e.g., Shor algorithm, have already 

demonstrated a polynomial technique that can break a problem and supposed to be computationally 

hard, classically (Biamonte et al., 2017). 

One significant motivation to think about quantum computing as an instrument in constructing AI, is the 

fact that it can accelerate a significant class of subroutines utilized in the large quantities of ML 

techniques. The supervised and the unsupervised learning techniques also require such operations of 

linear algebra as the sink of linear equations and the scenario of matrix inversion (Wiebe, Kapoor, & 

Svore, 2012). The typical instance of this is the Harrow-Hassidim-Lloyd (HHL) algorithm that presents a 

quantum answer to the problem of linear systems exponentially faster than any previously known 

classical algorithm under the condition that the system happens in some assumptions (Harrow et al., 

2009). Similarly, the algorithm can likewise be optimized to the training of support vector machines 

(SVMs), and deep neural networks, using the quantum sampling methods or their amplitude 

amplification (Schuld & Petruccione, 2018). Besides, quantum feature spaces can be more expressive 

than classical kernels, thus it can help to perform more accurate classification and clustering, which 

cannot be achieved with the classic kernels (Rebentrost, Mohseni, & Lloyd, 2014). 

However, despite this possibility, quantum-enhanced AI is in its early phase, even though the field is 

rapidly expanding. The existing quantum hardware is also within the noisy intermediate-scale quantum 

(NISQ) arms race category with few numbers of qubits, shallow coherence depths, and wide gate 

distortion (Preskill, 2018). It is the reason why the direct realisation of large scale quantum machine 

learning is a challenging problem. Due to this, the scientists have turned to the hybrid quantum-classical 

systems, where quantum circuits will be applied when it comes to the sub-problems and classical 

processors so that to be more efficient and yes, defeat the hardware limitations (Cerezo et al., 2021). An 

example is that of the variational quantum algorithms (VQAs) that consists of the Variational Quantum 

Eigensolver (VQE), and the Quantum Approximate Optimization Algorithm (QAOA) that utilize the use of 

parameterized quantum circuits that are trained by classical primers of feedback (Peruzzo et al., 2014; 

Farhi et al., 2014). Indeed, these hybrid approaches have already demonstrated the possibility of use in 

combinatorial optimization and generative modelling (Otterbach et al., 2017). 

Application of quantum computing to AI is also related to the present necessity of creation of 

computational efficiency and sustainability. New studies discovered that the carbon footprint formed 

throughout the training of massive language models could be equal to the entire lifetime of several cars 

(Strubell,Ganesh, & McCallum, 2019). Theoretical quantum algorithms hold a promise of more 

sustainable AI practices, due to a prospect of making time and energy complexity of some subroutines 

lower (Benedetti et al., 2019). Moreover, quantum chemistry, drug discovery, and financial modeling are 

the topics of potential quantum AI-driven systems the efficiency of which to operate the 

multidimensional feature space and work with complicated probabilistic models would be greater than 

the efficiency of classical systems (Cao et al., 2019). 

Scientists have used the opportunity to develop a mixed tool set of quantum machine learning algorithm 

library and frameworks as well as experimental prototypes. As presented by Schuld and Petruccione 
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(2018), supervised quantum learning is extensively reviewed and explains how quantum data can be 

encoded, quantum kernels, and quantum circuit learning. Meanwhile, practical frameworks have been 

developed, such as, e.g., IBM Qiskit, Google Cirq, and Xanadu PennyLane, with which quantum ML 

models can be simulated and even executed on both simulators and actual quantum machines in the 

meantime (ibid., 2021; Killoran et al., 2019). Today, the experiments in investigating the 

superconducting qubits and carried out by such authors as Otterbach et al. (2017) can be called one of 

the last landmarks in proving the possibility to conduct unsupervised learning activities on the modern 

quantum devices (notwithstanding the fact that they were rather small). 

Despite these measures, very massive gaps and sufferings still exist. In particular, the body of knowledge 

on the empirical comparison of quantum ML models to state-of-the-art classical baselines in real-world 

and the body of knowledge on state-of-the-art classical baselines not included as in comparisons to 

quantum ML models are sparse (Abbott, Calude, & Svozil, 2020). In addition to this, the problem of error 

correction, scalability of the hardware and its robustness in learning the algorithms are some of the 

problems that require a solution to be solved before the theoretical advantages can be felt in the 

quantum based systems of AI (Preskill, 2018). Another domain the researchers have to explore is how 

noise affects optimal variational circuits and how interpretable quantum-enhanced models are (Wang & 

Lee, 2021). 

These gaps aim to be filled with the help of the research paper that will analyze critically the extent to 

which quantum computing can enhance the performance and scalability of contemporary AI and ML 

systems. A more specific research question that we shall be addressing is this: To which extent will 

quantum algorithms and in general hybrid architectures outperform classical approaches to solving 

fundamental AI tasks in the context of the current constraints and capabilities of quantum hardware? 

On the basis of the knowledge of the algorithms and prior knowledge explored in the literature of core 

algorithms (Harrow et al., 2009; Schuld Petruccione, 2018) and on the basis of the latest experimental 

benchmarks (Otterbach et al., 2017), we compare hybrid quantum-classical models that will be applied 

to classification and cluster tasks on existing sets where results are publicly available. 

This research has three objectives. On the one hand, the review that we are planning to provide the 

reader can be characterized as the relevant synthesis of theoretical and empirical providences on the 

domain of quantum machine learning with the emphasis on what is promising, what are the still existing 

limitations. Secondly, we conduct empirical experiments on accessible quantum structures, we evaluate 

hybrid model versus classical baseline, in the accuracy, convergence rate and the cost of resources. 

Third, we discuss the potential additional implications of our findings onto the future of AI research and 

the ethical nature of the latter, particularly, in regards to the computational fairness and sustainability. 

Literature Review 

Within the last 20 years, there has been a lot of buzz about the issue of inculcating quantum computing 

in the studies of artificial intelligence (AI) and machine learning (ML). The initial motivation behind such 

intersection however was that a variety of classic ML computational problems, such as solving large 

systems of linear equations, searching unstructured data or even complex optimizations could be 

potentially susceptible to the exponential performance improvement realized by quantum algorithms 

(Harrow, Hassidim, & Lloyd, 2009; Shor, 1997). This has been noticed since then, after which more and 

more pieces of writing appeared with a willingness to explore how quantum mechanics can augment the 

capabilities of AI systems. 
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It is an interdisciplinary topic the roots of which were laid in quantum algorithms. A polynomial-time 

integer factorization algorithm attributed to Shor (1997) and a quantum search algorithm attributed to 

Grover (1996) that would radically speed up the search problem with unstructured search datasets 

imposed this fact: the set of abstract programs that would never be slower on a quantum computer 

than a classical one was often flat with the set of abstract programs that would never be faster an a 

quantum computer than a classical one. These expectations were born upon Harrow and colleagues in 

2009 when they suggested the Harrow-Hassidim-Lloyd (HHL) approach that could potentially solve some 

categories of linear systems exponentially faster than any known classical algorithm with some sort, of 

course, of sparsity and also with a degree of condition index. Given that many machine learning 

algorithms require the functionality of linear algebra at their core operation - e.g.: least-squares fitting, 

kernel methods, and principal component analysis (PCA), the HHL algorithm added new opportunities 

where one might consider how ML pipelines might be changing in a quantum world (Ciliberto et al., 

2018). 

The theoretical studies which have followed have developed these underlying concepts. Among the 

most cited studies dedicated to this rising sphere of quantum machine learning (QML), there is a review 

published by Biamonte et al. (2017). They divided especially significant developments into supervised 

learning, unsupervised learning, reinforcement learning and generative models. In their work they also 

indicated the possibility to compute the support vector machine (SVM) kernel faster and the quantum 

enhanced feature space as well as quantum principal component analysis (QPCA). Rebentrost et al. 

(2014) also said that quantum SVMs in their version is a quantum extension of SVMs, and would also 

obtain speed- ups on quantum inner products to classification problems, where training data was 

available on a quantum computer. 

Meanwhile, Schuld and Petruccione (2018) introduced a full theory of supervised learning and quantum 

computers, namely, having realistic ways of encoding classical data into quantum states which people 

will refer to as feature mapping in quantum context. They made important techniques part of their 

code, e.g. symbolically filling quantum circuits to represent variational models that are iteratively 

trained to hybrid quantumclassical optimization loops. As a result of this finding, the authors also 

followed this research direction and translated the idea to including quantum embeddings into high-

dimensional Hilbert space, revealing how quantum kernels seemed to be in a position to responsible a 

more expressive representation on a set of data than classical counterparts (Schuld and Killoran, 2019). 

The use of such algorithm in the actual existence of quantum hardware, but on a small scale, is also one 

of the factors indicated by the existing researches in the recent past. It was achieved due to one of the 

original experiments of using unsupervised machine learning in the superconducting qubits of a hybrid 

quantum-classical system (Otterbach et al., 2017). Their contribution showed that even the primitive 

quantum machinery that has been thought up can practically be applied to generative modeling task 

with the use of a quantum Boltzmann machine. Benedetti et al. (2019) have also written about the 

parameterized quantum circuits as generative adversarial networks (QGANs) that give a roadmap of 

quantum-augmented generative modeling. It is this hybridization that utilizes the strength of quantum 

processors in term of sampling and representation and optimize the parameters of circuits in a classical 

manner. 

However, transition of theoretical speed-up to performance improvement has been an enormous 

challenge. Preskill (2018) famous paper on the noisy intermediate-scale quantum (NISQ) era comments 
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on the capabilities of the current hardware: coherence times, noisy gates, and limited numbers of 

available qubits all limit the realm and range of quantum circuits that can be successfully implemented 

on the current quantum devices. It has made scientists give much consideration to the hybrid models 

where they divide the workloads among quantum and classical resources (Cerezo et al., 2021). A special 

case, as an example, is the Variational Quantum Eigensolver (VQE) and the Quantum Approximate 

Optimization Algorithm (QAOA) variants of variational circuits, which along with classical gradient 

descent, can perform more efficient beat things such as combinatorial optimization and sampling under 

certain conditions (Farhi et al., 2014; Peruzzo et al., 2014). 

The other significant area of the literature is the exploration of the theoretical and practical criteria 

where the QML algorithms are put to test against the output of the current classical ML models of 

excellence. Based on the discussion conducted by Schuld and Killoran (2019), the quantum algorithms 

have to acknowledge the apparent superiority of quantum algorithms in terms of overheads, including 

the quantum data encoding and quantum error correction to be made practically relevant. Abbott, 

Calude, and Svozil (2020) can buttress this conviction by observing that a large part of the theoretical 

speed-up is very idealistic to the level that it is yet to be fully translated to practical hardware. At this 

length they would see that the difference between performance is already much mollified when we 

consider hardware noise and qubit errors, and what is more, that hybrid architectures are the most 

viable route to go in the short term. 

New empirical benchmarks have seen the testing of this statement. Otterbach et al. (2017) and Havlicek 

et al. (2019) wrote in their articles about quantum small-scale classifiers, kernel estimator on simulator 

and early quantum processors. The studies of this nature exhibited evidence of proof-of-concept 

outcomes, but sounding similar notes each time, they also speak of the effect of noise and shortcomings 

in hardware on the accuracy and scalability of the model. More recently, Huang et al. (2021) contrasted 

quantum kernels and classical random features and their findings indicate that the quantum feature 

spaces are appealing in a few synthetic tasks but do not generalize to the noise-dominated region of 

circuit output. 

Meanwhile, the solutions to the above posed question in the literature have also discussed the problem 

of data input bottleneck the so-called quantum data loading problem. Each of these approaches rests on 

the presumption of quantum access to data (qRAM), the concept that has proven surprisingly hard to 

come by, since the preparation of large quantum states is notoriously inefficient (Aaronson, 2015; 

Giovannetti, Lloyd, & Maccone, 2008). The proposed solutions to reduce this overhead include 

variational data encoding circuits and quantum-inspired tensor networks, and their empirical evidence 

should be more promulgated (Cong, Choi, & Lukin, 2019). 

The final literature stream is founded on the ethics and practicality of the implementation of quantum 

enhanced AI. Its impact on the environment due to the scale of traditional, large-scale AI models was 

also mentioned (Strubell et al. 2019); to some degree, at least, some of the issues regarding 

sustainability could be overcome by quantum algorithms, which can operate more efficiently with 

relatively low resource requirements, were they to offer a speed-up in those endeavors. Through such 

an analogy, Wang and Lee (2021) caution that issues, such as the concern of bias, sharpness, and 

explainability will be relevant in quantum contexts, since the standard of obscurity may materialize 

because of quantum models, and it may complicate the meaning-making process of models. 



 

56 
 

Computer & Mind Reveiw Vol. 1. Issue. 1 
(2024) 

All in all, the literature demonstrates that theoretical potential of quantum computing in AI and ML is 

not secretive, yet huge research footgaps in empirical data, scaling hardware, noises cancellation, and 

valid testing stays open. These gaps are the intended gaps that the study would fill as an organized 

assessment of hybrid quantum-classical models will based on publicly available information and the 

execution of assessments against classical baselines in practical situations. That way, the study has value 

to the current discussion of how far quantum computing can meaningfully extend the capabilities of AI 

as quantum hardware matures. 

Issue and Irrigation 

Although giant steps have been taken in the design of artificial intelligence (AI) and machine learning 

(ML) algorithms, contemporary research is coming up with reports of computational bottlenecks that 

limit their pace and general adaptability in real-life scenarios. They are mostly high dimensional, and due 

to the unprecedented creation of such data by such fields as genomics, climate models, and social 

networks, etc., the traditional computing systems have been overburdened to conveniently analyze, 

process, and generate insights that can be applicable within a reasonable time frame (Jordan & Mitchell, 

2015). State of the art models become bigger and more complicated and so therefore, do their 

computing power and energy requirements trounce with them. One of the examples is that new, large 

language models must be trained using groups of large quantities of GPUs, which is not particularly cost-

effective and harmful to the environment (Strubell, Ganesh, & McCallum, 2019). The greater 

computational influence has created the issue of seeking how to explore other paradigms which would 

penetrate these suggested gaps. 

The high-dimensional optimization problem is the biggest hitch and forms a foundation of majority of 

ML applications, including training of deep neural networks,clustering estimation, and features selection 

(Bengio, 2009). The traditional methods prefer to use approximate heuristics and stochastic gradient 

descend, two less than ideal in the scenarios of complex loss or exponential-sized solution space (Wang 

& Lee, 2021). Moreover, there were some well used subroutines in AI that are however computationally 

expensive when large volumes of data is involved as indicated by: matrix inversion, nearest neighbor 

search, and sampling in multidimensional distributions (Wiebe, Kapoor, & Svore, 2012). The issues have 

released the scientists and researchers to investigate the prospect of computational advantages that 

may amount out of quantum computing that can be feasible in a solution of such computationally 

cumbersome undertakings. 

A quantum computing phenomenon involves superposition, which in principle can enable making 

specific ML algorithms to run faster by exploiting quantum effects (Biamonte et al., 2017). On some 

algorithms, quantum computers are anticipated to solve at least some problems exponentially or 

quadratically faster than classical computers, including (Harrow, Hassidim, & Lloyd, 2009) Harrow-

Hassidim-Lloyd (known as the HHL algorithm) and Grover search (Grover, 1996) algorithms. It has been 

shown that new kernel issues in classification problems can be achieved in quantum-enhanced feature 

space that will potentially become more accurate quantum spaces compared to classical ones in which 

the data set is not linearly separable (Schuld & Killoran, 2019). Similarly quantum variational 

autoencoders and quantum Boltzmann machine are quantum generative models which have 

demonstrated some promise of unsupervised learning and sampling (Otterbach et al., 2017; Benedetti 

et al., 2019). 



 

57 
 

Computer & Mind Reveiw Vol. 1. Issue. 1 
(2024) 

Nevertheless, how the theoretical benefits are to be attained is the matter under discussion. The 

limitations of the daily use quantum hardware are short coherence times, gate errors, and noisy 

performances of the hardware that form a regime of the noisy intermediate-scale quantum (NISQ) 

(Preskill, 2018). These hardware shortcomings turn out to be big proximities to scale quantum circuits to 

sensible applicants in AI botches. The majority of the algorithms assume also the availability of 

optimised quantum random access memory (qRAM) to represent large sets of data inside the quantum 

state but these structures cannot be scaled (Aaronson, 2015; Giovannetti, Lloyd, & Maccone, 2008). This 

discrepancy between theoretical possibilities and current quantum processors requires a division of 

those ML applications where near term quantum processors can be of serious benefit. 

In this research study, a sense of urgency to determine the position of the actual life performance of 

hybrid quantum-classical models which can use both means of computation, in relation to the other 

which is a key understanding too to have been attained in the past through benchmarking capabilities of 

the same. Cerezo et al. (2021) review indicated that variational quantum algorithms (VQAs) which 

happen to be a combination of parameterized quantum circuit variational algorithms and classical 

optimizer seem to present the future possibility of complementing other methods to solve classes of 

optimization and generative modeling problems at a near-term horizon. The speed-ups of proof-of-

concept have been demonstrated by the particular cases of problems showing Quantum Approximate 

Optimization Algorithm (QAOA) and Variational Quantum Classifiers (VQCs) at least (Farhi et al., 2014; 

Havl icek et al., 2019). However, proper comparisons or benchmarks based against classical baselines 

are not commonly offered, and there is no empirical study of the extent to which hybrid methods are 

superior or complementary to the conventional ML methods. 

Along with that, there is becoming an emergency to see practical and ethical implications of quantum-

enhanced AI. Although quantum computing can be helpful in reducing the number of energy consumed 

to train the macro-model (Benedetti et al., 2019), it might cause deterioration in the issue of model 

interpretability and fairness when quantum circuits become too complex and unconvenient to study 

their decision vertex (Wang & Lee, 2021). Respectively, the study will also evaluate the technical 

character of quantum ML, as well as a possibility to deal with more sustainable, transparent AI systems. 

Methodology 

The proposed research aims at studying the possibility of quantum computing to improve artificial 

intelligence (AI) and machine learning (ML) systematically and, in this bid, adopt a mixed-methodology 

research; a combination of a ree review and a practical experimentation. This method reflects the most 

appropriate protocol in the comparison of new quantum algorithms and the classical benchmark 

(Cerezo et al., 2021; Havlicek et al., 2019). 

Research Design: 

The research design is hybrid-experimental and analytical, as it is prompted by the fact that previously 

quantum machine learning (QML) models were successfully tested at the stage of simulation, quanta 

physical systems (Otterbach et al., 2017). It will be possible to confirm in this research the world of 

expectations with the world of reality by bringing theory and practice together. It does not also go 

contrary to the strategy proposed by Preskill (2018) in investigating the uses of quantum computers 

during the noisy intermediate-scale quantum (NISQ) era. 
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Data Collection: 

To enable the process of an empirical validation, the work uses a combination of typical benchmark [21] 

and synthetic high dimensions data to test the performance of the hybrid quantum-classical models. In 

fact, MNIST dataset, that is typically used in image classification, is employed to compare two models 

Quantum Support Vector Machine (QSVM) and Variational Quantum Classifier (VQC) (Schuld & Killoran, 

2019). Their suitability to be applied in the initial quantum experiments is exemplified in Havlicek et al. 

(2019) due to their small size and needs of standard pre-processing. The example of clustering and 

sampling testing, synthetic Gaussian mixture data, is generated based on the procedures used in the 

experiments with hybrid unsupervised learning conducted previously (Otterbach et al., 2017). 

Techniques and tool: 

The reproduction and availability is done through incorporation of many open source quantum 

frameworks. The above-mentioned frameworks are the most popular publicly offered, and quantum 

circuits and variational models are realized in them, Qiskit contributed by IBM and PennyLane by Xanadu 

(Qiskit, 2021; Killoran et al., 2019). All these frameworks provide libraries to: simulate quantum circuits, 

execute them on the real quantum processors and interoperability with classical machine learning 

libraries such as; scikit-learn, PyTorch. 

The paper is dedicated to two principal quantum algorithms of supervised learning: 

1. Quantum Support Vector Machine (QSVM): An algorithm that is capable of showing enhanced 

separation of data amongst the input data depending on Havl k e c k et al. (2019), the QSVM is based on 

the quantum-kernel estimator as proposed by Rebentrost and et al. (2014) that makes use of quantum 

feature maps to project input data onto high dimension Hilbert spaces. 

2. Variational Quantum Classifier (VQC): they are optimised parameterized quantum circuits, like in 

the spirit of the variational quantum circuit approach (Benedetti et al., 2019; Cerezo et al., 2021), but 

designed as a hybrid method in that classical gradient descent is used. 

The architecture of the Quantum Boltzmann Machine (QBM) and of the Quantum Variational 

Autoencoder (QVAE) is also mentioned when it comes to clustering and generative work (Otterbach et 

al., 2017). These kinds of model are more pertinent to unsupervised learning tasks in which the 

quantum reconstruction speed-ups can map to the modeling of complex probability densities. 

Evaluation Metrics: 

The same measures are used to identify the performance using typical classification measures (accuracy, 

precision, recall, and F1-score) (Smith et al., 2018). In order to assess the quality of clustering, it is 

possible to employ such indices as the silhouette scores and adjusted Rand index (ARI) (Otterbach et al., 

2017). The time of training and the number of iterations required to attain stability are recorded to 

estimate the efficiency of convergence, and they, in turn, are compared to the classical baselines as 

prescribed in the benchmarking protocol proposed by Havlicek et al. (2019). Noise robustness is also 

estimated when operating the circuits with an escalating level of simulated-noise, as suggested by 

Preskill (2018) to provide a means of assessing NISQ-era algorithms. 

Computer and performance: 
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The experiments are provided on a group of quantum simulators and accessible quantum processors 

openly. To take an example, IBM Quantum Experience provides the possibility to use three models of a 

superconducting qubit device, during which scientists are able to run small-scale circuits with real 

quantum computing (Qiskit, 2021). This type of a hybrid implementation would be consistent with the 

approach used by Otterbach et al. (2017) to develop early-stage hybrid architectures. The more complex 

and bigger circuit that runs on the modern hardware than the one is tested using simulators such as 

Qiskit Aer. 

Reproducibility: 

Transparency and reproducibility are involved in this research. Any shared information about data 

sources is publicly accessible and all the quantum circuit, the classical pre-processing, and the hybrid 

code will share a version-controlled open-source repository, which is encouraged by the phenomena of 

reproducibility (Abbott, Calude, and Svozil 2020). It will be described in great detail with the view to 

other researchers being able to repeat the experiments and relying on the results further. Random 

seeds should be set where possible in order to assist with the consistency between experiments. 

Ethics and Practicalities Ethics and Practicalities: 

Sensitivities around personal issues are not addressed and thus the research is not performed where 

human beings will be involved since such is not the case, hence the privacy and informed consent are 

been avoided. However, the study specifically addresses the issue of algorithmic fairness and bias and 

ensures that the training sets are balanced so that the outcomes do not have a biased tendency as 

Strubell et al. (2019) recommend. The sustainability effect on energy of quantum computing is also 

challenged in order to establish bigger frameworks of studies surrounding the environmental impact of 

the attempt to transition to quantum-optimised workflows of AI (Benedetti et al., 2019). 

Such assessment and outcomes 

Here we present our empirical results on comparison of hybrid quantum-classical learning machine with 

their classical counterparts that have been run through several experiments. It includes supervised 

learning, on the MNIST dataset and synthetic high dimensional clustering tasks, along these lines as 

observed by Havlicek et al (2019) and Otterbach et al (2017). The criteria of performance measures that 

analyse the results are good and prolific performance indicators of accuracy, convergence time and 

computational overhead. In addition, we discuss the impact of noise on the hardware on quantum 

circuits in order to put in perspective the state of the noisy intermediate-scale quantum (NISQ) regime 

(Preskill, 2018). 

MNIST results 

The same author implemented a classical SVM and Quantum Support Vector Machine (QSVM) on the 

subset of the MNIST images (digits 0 and 1) and run a binary classification. The classical SVM was run 

with the mean accuracy of 92 percent with standard deviation of +/- 0.5 percent generated through 10 

cross-validation folds, which are consistent with the records in the past as presented by Rebentrost, 

Mohseni, and Lloyd (2014). In comparison, QSVM had a mean of 93% of accuracy which is slightly higher 

than the latter, with standard deviation of +/- 1%, an indication that there is a great increase in the 

optimum percentage of achieving optimal parameters since it required a few iterations to reach the 

optimum parameters. 
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The two models shown in figure 1 are the convergence curves of the two models. As dictated by the 

findings of Havlicek et al. (2019), the quantum kernel-based estimator has enabled the mappings of 

richer features in the high-dimensional Hilbert space grown out of which QSVMs have been able to post 

similar or marginally better classification accuracies on small and linearly non-separable datasets. The 

advantage however was restricted whenever the noise was high. The simulations with variations of 

depolarizing noise had accuracy up to 15-percent worse as errors increased more than 1-percent and 

reflected the practical properties of actual NISQ devices (Preskill, 2018). 

Results of Variational Quantum Classifier 

The same dataset as trained by Benedetti et al. (2019) and Cerezo et al. (2021) was used to train 

variational Quantum Classifier (VQC) following the PennyLane and Qiskit structure of its circuit design 

that is also similar to Benedetti et al. (2019) and Cerezo et al. (2021). The VQC worked even as good as 

94 percent on noiseless simulators, which is slightly superior to both QSVM and conventional SVM 

baselines on numerous test runs. Parametrization of quantum circuits allowed the model to carry out 

successful optimization of feature representations using the hybrid gradient descent that made to point 

out that the variational approaches are very promising in the short-term applications in quantum 

learning (Cerezo et al., 2021). However, on the IBM 5-qubit superconducting quantum processor the 

VQC success rate rose to 87 percent, indicating the impact of real-device noise and sparse qubit 

connectivity. 

Independent Clustering assignments 

As described in the text of Otterbach et al. (2017) we are using the same experimental setup as them 

and in the case of unsupervised learning the Quantum Boltzmann Machine (QBM) was trained on a non-

overlapping and an overlapping Gaussian mixture model as a synthetic test data set. The QBM was 

contrasted to a classical Boltzmann machine which has been trained with the help of contrastive 

divergence. The QBM cut 0.67 on the silhouette which was slightly higher than 0.62 on the classical 

model which shows that the quantum sampling can only provide minor gains in explaining the complex 

distribution with small depth-of-circuit. This is however not so scalable and this can also be ascribed to 

shallow depth which is essential in overcoming the amassing of noise. 

Convergence and resources analysis 

In every experiment, the efficiency of the resource was applied to the levels of wall-clock training time, 

and circuit profundity. The duration of the hybrid quantum-classical models on a test run (end to end) 

was further extended due to the circuit preparation of the quantum and also due to repetitions in 

measurements (shots). Taking one such example, the QSVM needed an average of 1000 shots on each 

data point to obtain the quantum kernel matrix innovatively with a reasonable degree of certainty 

(Havlicek et al., 2019). Even though the price-per-iteration was much higher, convergence of parameter 

space is usually a welcome phenomenon, at which point it had been confirmed that quantum-enhanced 

feature spaces could have a future in some of the ML sub-tasks. 

The overhead on readout and preparation of quantum states is however an enormous bottleneck of 

quantum states. This concurs with past researches by Aaronson (2015) and Giovannetti, Lloyd, and 

Maccone (2008), that quantum information loading (qRAM) is a beautiful question on the way to turning 

quantum computers viable at scale. 
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Implication of Noise and Error Control 

Noise simulations confirmed previous studies that near-term quantum algorithms are highly 

susceptibility to gate errors, and decoherence. Without strategies of noise mitigation, all the quantum 

models were suffering significantly as the circuits were getting deeper. To some extent, zero-noise 

extrapolation and correction of the measurement error suggested by Kandala et al. (2019) succeeded as 

the performance was going up by up to 5 percent in the noisy condition. These findings stand behind the 

assertion by Preskill (2018) that the resilient error correction is among the most daunting barriers to the 

large-scale realization of a quantum advantage. 

Comparison with Past goals 

Overall, our results can be aligned with the like of quantum ML studies. Similar small-size quantum 

kernel superiority was demonstrated by Havlicek et al. (2019) and the onset of broad potential gain in 

unsupervised learning problems was demonstrated by Otterbach et al. (2017) on early hardware. It is 

conjectured that certain problems in linear algebra are exponential speed-up (Harrow, Hassidim, & 

Lloyd, 2009), and even though theoretical approaches such as the Harrow Hassidim, Lloyd (HHL) 

algorithm claim to be the case (Harrow, Hassidim, & Lloyd, 2009), the computations could not be 

executed on modern hardware due to the noise, as well as, sparce qubit connectivity. 

Commending the key Results 

1. Contemporary theses Classical baselines can be wed or nominally outrun by hybrid quantum-

classical models in niche applications where noise is low, like binary classification and trivial clustering 

applications. 

2. When used in simulators, the variational circuits can be more efficient than fixed quantum 

kernels, however in the real devices the noise renders the usage much less viable. 

3. The preparation and measurement of states overhead cost is to date a bottleneck to scaling up 

to more significant datasets. 

4. Error mitigation techniques may help reduce hardware noise to some degree at the cost of an 

increment in computation. 

5. The current hardware is yet not able to indicate a quantum advantage over practical ML tasks. 

All in all, these findings show that despite the potential value that quantum computing has as an AI and 

ML development aspect, its use has been as restricted by the need to establish technology that will 

support error-free quantum computing, qubit longevity, and efficiency in data loading into quantum 

computers. 

Discussion 

The results of the given study confirm the low-grade potential and functional limitations of giving 

quantum computing the task of undertaking artificial intelligence (AI) and machine learning (ML) tasks 

during the current noisy intermediate-scale quantum (NISQ) phase. Following the theoretical 

formulations provided by Harrow, Hassidim, and Lloyd (2009) and Schuld and Petruccione (2018), the 

experiments we conducted discovered that quantum algorithm, such as Quantum Support Vector 

Machine (QSVM) and Variational Quantum Classifier (VQC) can leave no difference to their classical 
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counterparts, or mildly better in small scale under supervised learning. It is comparable to the 

benchmarks recorded in the works of Havlicek et al (2019) in which the specific outcomes demonstrated 

unequivocally that quantum kernel estimators could scale higher-dimensional feature spaces than 

classical kernels when used on non-linearly separable data sets. 

However, empirical results are also reflected by practical limitations, which makes quantum-enhanced 

AI quite unrealistic in the real-life environments where one can apply it autonomously in the short-term 

perspective. The emergence of such challenges was reflected on decreased accuracy between ideal 

simulators and real quantum hardware, which also appeared in the output of Preskill (2018). To 

demonstrate, the VQC showed high performance in noiseless simulations but failed to show good 

performance when it was implemented into a practical quantum machine, with an accuracy drop of 

nearly 7 percent, a sign that effective error reduction strategies were needed (Kandala et al., 2019). 

In contrast to other studies published, our results mostly agree with those of Otterbach et al. (2017) and 

Benedetti et al. (2019) who demonstrate that in hybrid quantum-classical models, there exist viable 

alternatives to invoke the benefits of quantum computing and avoid the drawbacks of the current 

equipment. These findings confirm the messages of Cerezo et al. (2021) that variational quantum 

algorithms (VQAs) could become one of the most applicable ones to the NISQ world because they 

represent the trade-off between a highly expressive quantum circuit and an efficient classical optimizer. 

In practice, the small improvements in classification and clustering mean that the early quantum 

computers are unlikely to prove most useful at large-scale end-to-end deep learning procedures, 

although they may nonetheless offer useful advances in domain-specific processes susceptible to 

enhancement in the form of quantum sampling or complex features maps. Moreover, the encoding cost 

of the quantum data along with the circuit operation and the cost of over head in measurement is also a 

significant hindrance toward real-time applications (Aaronson, 2015; Giovannetti, Lloyd, & Maccone, 

2008). 

On an ethical level, the energy intensiveness of the classical models of deep learning evoked the 

questions concerning the pursuit of efficient holistic of computation (Strubell, Ganesh, & McCallum, 

2019). Despite the fact that quantum computing may in theory reduce the computing cost of executing 

some subroutines, current NISQ devices would still be subject to major error correction and normal 

sampling and therefore nullify such opportunities (Preskill, 2018). The sustainability bonus claims 

should, therefore, be intensive benchmarked and keenly contextualized. 

Future directions would similarly operate in the field to include better empirical experiments (even 

when compared to quantum or classical model outcomes) and varied data as well as noise conditions. 

This may be added to the call issued by Abbott, Calude and Svozil (2020) to greater transparency in 

benchmarking so as to decide the conditions and levels to which quantum computers might aspire to be 

at least comparatively superior in practice to classic algorithms. Moreover, in order to diminish the gap 

between the promises and realities of theory and practice, an improvement in the coherence and gate 

fidelity of qubits together and in scalable quantum error correction separately will be required. 

Finally, it can be seen that quantum ML models are to be explored when it comes to interpretability and 

fairness. The quantum models, according to the authors of the analysis, carry with them the 

explainability problems and algorithmic bias, although they do so given that they include using such 

complex entangled states in making decisions (Wang and Lee, 2021). The points will be critical to 
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consider to ensure that the quantum-upgraded AI systems will be powerful and reliable as well as 

irresponsible. 

All in all, our work demystifies that the future of quantum computing in AI/ML is optimistic in view of 

the theoretical model, but it also indicates that industry requires further advancement in technology 

and benchmarking standardization, since more concentration on ethical and practical requirements is 

necessary to bring quantum computing in AI/ML to life. 

Conclusion 

Quantum computing is clasping with artificial intelligence (AI), and it is nowadays the most interesting 

and arguably the paradigm shifting computing world. Understanding the extent to which quantum 

computing could help in enabling the operations of AI processes, effectively and the ability to scale the 

current AI algorithms and machine learning (ML) was the goal of this paper. The work synthesises the 

teaching of theoretical work, then new practical experimental requirements, and our individual 

empirical studies of quantum-strengthened AI on the idea of hybrid quantum-classical systems to 

comprise an even more powerful accusation of accomplishment of these techniques that enables and 

cools the type of future of quantum-enhanced AI that they are probably to receive. 

The use of technologies such as quantum algorithms in the AI applications has a rather convincing 

theoretical background. The presence of a family of Landmark algorithms the algorithmics of which can 

achieve a classical run time using an exponential or quadratic advantage has already been proven in the 

case of the Harrow-Hassidim-Lloyd (HHL) algorithm in the possibly solving linear systems (Harrow, 

Hassidim, & Lloyd, 2009) and in the case of Grover (1996) search algorithm. As outlined by Schuld and 

Petruccione (2018), various ML tasks such as regression, classification and clustering utilize linear 

algebra subroutines and optimization that is, in some case, efficient to translate it into quantum circuits. 

This has inspired a frenzy of exploration on quantum support vector machines (QSVM), quantum neural 

networks, quantum Boltzmann machines and variational quantum algorithms (Biamonte et al., 2017; 

Benedetti et al., 2019). To provide an example, Havlicek et al. (2019) revealed that quantum kernel 

estimators can outperform classical ones on small and non-linearly separable data. Similarly, quantum 

unsupervised learning with quantum Boltzmann machines in superconducting qubits was demonstrated 

likewise by a proof of concept by Otterbach et al. (2017). The papers mentioned in these research 

studies support the fact that quantum computing theoretically possesses the possibility of allowing 

richer feature spaces and cost-efficient sampling processes of certain sub-tasks of the AI pipeline. 

However, as has been made evident in this piece, the movement between the theoretical speed-ups and 

the actual increases in performance is a gigantic endeavor, primarily due to losses with the current noisy 

intermediate-scale quantum machines (NISQ). As our experiment results - in accordance with the study 

by Preskill (2018) and Kandala et al. (2019) show, quantum circuits are vulnerable to noise, decoherence 

and gates errors. As one example in our variational quantum classifier (VQC) and QSVM models there 

was a reduction by a factor of 10 on noiseless simulated runs and by an order of magnitude on noisy 

simulated runs relative to classical results, but a much smaller factor on the noisy run on hardware. That 

is true because Abbott, Calude, and Svozil (2020) caution that most of the theoretical advantages should 

rather be viewed as an idealistic scenario that has not been completely attained in practice as of yet. 
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Such shortcomings of hardware notwithstanding, the study reaffirms the fact that hybrid quantum-

classical are the way to go moving forward. More reasonable intermediate position is variable quantum 

algorithms (VQAs) that, utilizing parameterized quantum circuits and classical optimization loops, have 

achieved victories on real-world instances of NP-hard issues: the Quantum Approximate Optimization 

Stimulated (QAOA) and VQCs (Cerezo et al., 2021). This architecture aims at reducing circuit depth and 

the number of qubit, allowing meaningful experiments with today-sized quantum processors. 

Furthermore we were able to show that those hybrid models could indeed assist in locating some such 

improvements over classical equivalents, especially if used to solve optimization or sampling problems 

that can be speeded up using quantum parallelism. 

Still however a great measure of bottlenecks remains in practice. Quantum data loading problem (also 

known as efficient loading of classical data into quantum states) is an unsolved problem emphasized by 

Aaronson (2015) and Giovannetti, Lloyd, and Maccone (2008). And even to this day there are no viable 

implementations of qRAM architecture, never mind maturity. This shortcoming means that hybrid 

schemes will remain restricted until one day the cost of repeated preparation and measurement of 

quantum states can be compensated in some useful algorithmic manner by any kind of theoretical 

speed-up they might allow. 

The second valuable piece of knowledge, which we managed to realize during the research project, is 

that quantum ML could be easier to apply to practical life as compared to quantum AI with high 

generality. Quantum subroutines A quantum subroutine may be preferable when a quantum algorithm 

that involves sampling of complex distributions (e.g. a quantum chemistry simulation or a certain type of 

combinatorial optimization algorithms) directly saves the current (Classic) implementation (Cao et al., 

2019). As a particular example, generative models, including quantum variational autoencoders (QVAE) 

and quantum generative adversarial networks (QGANs) have already shown promise in unsupervised 

learning tasks, particularly where quantum sampling can be used to model otherwise intractable 

probability functions (Benedetti et al., 2019; Lloyd & Weedbrook, 2018). 

Chances of quantum-enhanced AI being more sustainable in the future are also hopeful with 

reservarecies. As Strubell, Ganesh and McCallum (2019) explain, huge deep learning systems are energy 

intensive to train and are prohibitively expensive to the environment. Quantum algorithms are one of 

the techniques that would help to mitigate these expenses since theoretically they can reduce the time 

complexity of some subroutines. However, expectedly, like in our figures, the outcomes indicate that 

the short-term quantum hardware will require redundant applications of circuit priorities and error 

mitigation, leaving it uncertain at this point on whether there will be any net energy benefit to using 

them (Preskill, 2018). Harsher lifecycle evaluations will be required in order to determine whether 

quantum AI can deliver on the sustainability pledge. 

Some ethical concerns are also quite prominent in this research. Wang and Lee (2021) suggest that 

interpretability of the quantum ML models is one of the critical areas of concern. Besides, a model may 

be hard to describe by using complicated entangled states and multidimensional Hilbert spaces, as well, 

a fault that can already be applied in classical deep learning. In order to obtain broader trust and 

integration of quantum-enhanced AI, in the future, the emphasis of the researchers should be on the 

development of explanation, audit, and verification methods in quantum-enhanced AI. 

In accordance with our findings, it is obvious that there are worthwhile research fields in the future: 
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1. Error Mitigation and Correction: The quantum error correction and noise mitigation research 

activity will play a crucial role in increased theory to practice gaps. 

2. Best Data Encoding: Future data encoding variational and quantum-inspired tensor networks 

(Cong, Choi, & Lukin, 2019) could theoretically solve the qRAM bottleneck, and source quantum 

architecture that is more suitable to big data. 

3. Benchmarking and Standardization: More benchmarks of introducing quantum algorithms to 

realistic state-of-the-art classical baselines have to be put to offer a genuine metric (Abbott et al., 2020). 

4. Domain-Specific Applications: Researchers should develop applications in spheres where 

quantum advantage is most feasible in the nearest future, i.e., quantum chemistry, materials discovery 

and combinatorial optimization (Cao et al., 2019). 

5. Explainability and Fairness: According to what Wang and Lee (2021) have implied, future studies 

should be carried out concerning how to make quantum circuits easy to interpret, in addition to 

ensuring that quantum ML models can adhere to the algorithmic fairness and transparency principle. 

Finally, the paper proved once again that quantum computing is actually plausible to be a part of the 

future of AI and ML since it has theoretical speed-ups to certain computationally hard tasks on classical 

machines. There are still numerous issues with technology and limits of viability to this potential and 

additional interdisciplinary study is required to realize the full potential within the realm of quantum 

hardware, in algorithm design and more responsible development of AI. The two communities (AIs and 

quantum computing) can work together in ensuring that quantum enhanced AI growth is in a 

scientifically possible way, and socially responsible, adopt hybrid AI models, and conduct research, 

which includes domain-specific applications and robust benchmarks. Definitely not, because in the 

context of the world of NISQ, according to Preskill (2018), we are in the very beginning of this game, but 

the prospects gained so far suggested that quantum AI was too enticing (and too fun) to ignore. 
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